On Spectrum of the Linearized 3d Euler Equation

نویسندگان

  • ROMAN SHVYDKOY
  • MISHA VISHIK
چکیده

We investigate essential spectrum of the Euler equation linearized about an arbitrary smooth steady flow in dimension 3. It is proved that for every Lyapunov-Oseledets exponent μ of the associated bicharacteristic-amplitude system, the circle of radius e has a common point with the spectrum. If, in addition, μ is attained on an aperiodic point, then the spectrum contains the entire circle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Recent Developments in the Spectral Problem for the Linearized Euler Equation

The purpose of this article is to survey results concerning the unstable spectrum of the Euler equation linearized about a steady state. The Euler equations of the motion of an inviscid, incompressible fluid are the basic equations of fluid mechanics and they have been the object of much study by mathematicians over the centuries since Euler ”unveiled” them in 1755. However, many significant pr...

متن کامل

Operator Algebras and the Fredholm Spectrum of Advective Equations of Linear Hydrodynamics

In this paper we give a complete description of the Fredholm spectrum of the linearized 3D Euler equation in terms of the dynamical spectrum of the cocycle governing the evolution of shortwave perturbations. The argument is based on the pseudo differential representation of the Euler group and an application of an abstract isomorphism theorem for operator C∗-algebras. We further show that for a...

متن کامل

Essential Spectrum of the Linearized 2D Euler Equation and Lyapunov–Oseledets Exponents

The linear stability of a steady state solution of 2D Euler equations of an ideal fluid is being studied. We give an explicit geometric construction of approximate eigenfunctions for the linearized Euler operator L in vorticity form acting on Sobolev spaces on two dimensional torus. We show that each nonzero Lyapunov–Oseledets exponent for the flow induced by the steady state contributes a vert...

متن کامل

Continuous spectrum of the 3D Euler equation is a solid annulus

In this note we give a description of the continuous spectrum of the linearized Euler equations in three dimensions. Namely, for all but countably many times t ∈ R, the continuous spectrum of the evolution operator Gt is given by a solid annulus with radii e and e , where μ and M are the smallest and largest, respectively, Lyapunov exponents of the corresponding bicharacteristic-amplitude syste...

متن کامل

Integrable Structures for 2D Euler Equations of Incompressible Inviscid Fluids

The governing equation of turbulence, that we are interested in, is the incompressible 2D Navier– Stokes equation under periodic boundary conditions. We are particularly interested in investigating the dynamics of 2D Navier–Stokes equation in the infinite Reynolds number limit and of 2D Euler equation. Our approach is different from many other studies on 2D Navier–Stokes equation in which one s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005